NON DUDLIC SCHOOL
(C.B.S.E. Affiliation No. 1030502)
Mathematics Holiday Assignment-3 Session-2021-22 Class -X
1. Show that x ² – 3 is a factor of 2x ⁴ + 3x ³ - 2x ² - 9x – 12
2. Divide $(6 + 19x + x^2 - 6x^3)$ by $(2 + 5x - 3x^2)$ and verify the division algorithm
3. Find other zeroes of the polynomial $p(x) = 2x^4 + 7x^3 - 19x^2 - 14x + 30$ if two of its zeroes are $\sqrt{2}$ and - $\sqrt{2}$
4. Find all the zeroes of $2x^4 - 9x^3 + 5x^2 + 3x - 1$, if two of its zeroes are 2 + $\sqrt{3}$ and 2 - $\sqrt{3}$
5. Find all the zeroes of polynomial $4x^4 - 20x^3 + 23x^2 + 5x - 6$ if two of its zeroes are 2 and 3
6. When a polynomial f(x) is divided by $x^2 - 5$ the quotient is $x^2 - 2x - 3$ and remainder is zero. Find the polynomial and all its zeroes
7. If the polynomial f(x) = x ⁴ - 6x ³ + 16x ² - 25x + 10, is divided by another polynomial x ² - 2x + k the remainder Comes out to be x + a, Find k and a
8. On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x – 2 and -2x + 4, respectively. Find g(x)
9. If the polynomial $6x^4 + 8x^3 - 5x^2 + ax + b$ is exactly divisible by the polynomial $2x^2 - 5$, then find the values of a and b
10. What must be subtracted from $2x^4 - 11x^3 + 29x^2 - 40x + 29$, so that the resulting polynomial is exactly divisible By x^2 - $3x + 4$
11. Find the polynomial, whose zeroes are $2 + \sqrt{3}$ and $2 - \sqrt{3}$
12.Form a quadratic polynomial, one of whose zero is 2 + v5 and the sum of zeroes is 4
13. Find a quadratic polynomial whose sum and product of the zeroes are 21/8 and 5/16
14. Write a quadratic polynomial, the sum and product of whose zeroes are 3 and -2
 15. Find the zeroes of the polynomial and verify the relationship between the zeroes and the coefficient a) 4x² - 7 b) √3x² - 8x + 4√3
16. If one root of the polynomial $5x^3 + 13x + k$ is reciprocal of the other, then find the value of k?
17. If one zero of the polynomial (a^2 + 9) x^2 + 13x + 6a is reciprocal of the other. Find the value of a
18. If α and β are the zeroes of the polynomial f(x) = x ² – 8x + k such that $\alpha^2 + \beta^2$ = 40, find k 19. If α , β are the zeroes of a polynomial, such that $\alpha + \beta$ = 6 and $\alpha \beta$ = 4, then writes the polynomial 20. If the product of zeroes of the polynomial ax ² – 6x – 6 is 4, find the value of a